第160章 数学,不会就是不会(五)(2/2)
【畅读更新加载慢,有广告,章节不完整,请退出畅读后阅读!】
上揭示了概率。】br />
他们每个人出十块,约定谁先赢得三局就可以拿走全部的赌本。三局后,A赢了两场,B赢了一场。
这时候,A的妈妈叫A回家吃饭,他们的这个赌博小游戏不得不立刻结束。B很高兴: “那大家各自拿好各自的十块,回家吧。”
A却不高兴了:“我嬴了两场,如果再玩下去,那肯定是我先到三场。所以,我应该拿走全部的三分之二。"
两人就吵了起来,谁也不服谁。
最终,A说: "这样吧,我认识天才数学家帕卡斯,他是我见过的最聪明的人,或许他能为我们来做个决断。"
B同意了。
他们去见了帕卡斯。
结果,帕卡斯家中正好有一位访客,同样是数学家,叫费尔马。
两人讨论了一番后觉得: “因为你们的游戏还没有结束,所以我们不能用当下的输嬴次数来决定分钱的比例,而应该假设游戏继续下去之后,谁获胜的概率大来分配你们的赌资。"
A和B一想:“这很公平。”
于是,帕卡斯和费尔马开始埋首,算啊算啊算。
【帕卡斯和费尔马见面的这一天,就是概率学的开端。】
【当然,具体A和B的赌资到底是怎么分配的,今天我们就不详细讲了——具体,书上也没说呀。】
【只是,圆周率的数值在冥冥之中居然和概率学如此的吻合,也不得不说,这是一件非常不可思议的事情。】
【另外,十八世纪的天才数学家欧拉对圆周率也有所发现。】欧拉在做了很多研究之后,得出了欧拉公式。e^(iπ)+1=0
【这个公式成为了数学中的一条经典公式,也被誉为“世界最美公式”。】
【不仅是因为它的形式很美,而且将三个基本的数学常量都联系在了一起,还因为它后续在电路分析、信号处理、量子力学等领域都有着很大的作用。】
现代数学家在接受采访,当听到记者问道: “数学到底有什么用?”的时候,他笑了笑:
/>
&a]的圆出现在天幕上。一环套一环,五光十[se],十分迷幻。
【只要是圆,不管是任何圆,大的还是小的,它的数值都是恒定不变的,这本来就是一件充满了奥妙意味的事情。】
【而且,宇宙中存在着无数的圆。】
【不说恒星、行星的形状,且他们的运转轨迹大多都是以圆周来进行。甚至是,宇宙本身很有可能也是一个圆截面。】
【它在某个层面上,或许就揭示了宇宙的规律。】
【另外,圆周率是算不尽的。】
路小柒放了一段美剧里的片段。
数学老师在讲台上对下面的学生说起圆周率,言语中充满了憧憬:
“圆周率,3.1415926535………它会一直持续下去,不会重复。也就是说,在这串长长的小数中,你能找到你的出生[ri]期、你储物柜和银行卡的密码、你的身份证号码等等等等。如果你能把这些数字转换为字母,你能得到每一个单词和每一个可能的组合。"
“世界上的无限可能都在这个简单的圆周率里。”①
【π值到底意味着什么,即使是现在的数学家,依然对其充满了敬畏。】【有科学家认为,假如有一天,圆周率算尽了,或许数学的世界就会崩塌。】【也不知道,到底该期不期待那一天的到来。】
……
祖冲之一笑,对刚刚问自己的孙儿说:“现在,你明白了吗?”
"圆周率,
就是这个世间的真理所在。"
神秘、无穷,让人憧憬,让人愿意为之付出自己的一生,只为了追求那一长串数字。他至今想起来,依然是不悔的。
他的孙儿充满敬畏的点点头。
忽然就明白了自己爷爷和伯父为什么如此痴迷于计算圆周率。
【除了圆周率之外,还有一个同样非常神奇的数列,在大自然中几乎无处不在,似乎隐隐成为了一行潜在的代码。】
【那就是斐[bo]那契数列。】